Tuning solid-state blue and red luminescence by the formation of solvate crystals.
نویسندگان
چکیده
Tuning and controlling the solid-state luminescence of molecular solids play a key role in developing multi-color displays and tunable dye laser. In this work, we report the tunable blue and red luminescence by the formation of solvate crystals of 1,4-bis(5-phenyl-2-oxazolyl)benzene (POPOP) and 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM). Upon introduction of guest solvents (chloroform and dichloromethane) into the POPOP and DCM host matrices, the obtained solvate crystals exhibit an alternated stacking arrangement, interaction fashion, and crystal symmetry compared with the pristine chromophore solids. Furthermore, the solvates of POPOP (CCl3H) and DCM (CCl2H2) present changeable luminescent properties (such as one-/two-photon emissive wavelength, fluorescence lifetime and photoluminescent quantum yield) in the blue/red regions relative to the pristine POPOP and DCM. In addition, the second harmonic generation can also be obtained for the DCM (CCl2H2) due to the transformation of the centrosymmetric to a non-centrosymmetric structure from pristine DCM. Periodic density functional theoretical calculations suggest that the guest solvents do not participate in the frontier orbital distribution within the solvate crystals. Therefore, by the combination of experimental and theoretical studies on the solvate crystals, this work not only reports the supramolecular assembly of new types of host-guest photoactive systems, but also provides a detailed understanding of the electronic structures of the solid-state luminescent materials.
منابع مشابه
The development of aryl-substituted 2-phenylimidazo[1,2-a]pyridines (PIP) with various colors of excited-state intramolecular proton transfer (ESIPT) luminescence in the solid state
A series of solid-state luminescent dyes based on 2-phenylimidazo[1,2-a]pyridine (PIP) displaying a wide range of emitting colors from blue to red have been developed. Whereas 20-methoxy PIP (20MeOPIP, 10) shows blue luminescence, 20-hydroxy PIP (HPIP, 1) exhibits emission with large Stokes shift at around 500 nm that is known as the excited-state intramolecular proton transfer (ESIPT) luminesc...
متن کاملTuning the Luminescence of CdS Quantum Dots by a Simple Method
In this report, we present a facile approach for the synthesis of luminescent CdS and CdS:Mn+2 nanocrystals by reaction of CdSO4 and Na2S2O3 in the presence of thioglycerol (C3H8O2S) as capping agent. The influence of various experimental variables including, pH values and percentage of dopant, on the growth...
متن کاملLuminescence and scintillation characterization of Silver doped KCl single crystal grown by Czochralski technique for photonic applications
In this study, the scintillation and optical properties of pure and silver doped potassium chloride (KCl:Ag) single crystals were reported. Pure and doped KCl bulk single crystals with a good optical quality and free from cracks were grown from the melt using Czochralski technique. Different analysis methods were used to study the optical and scintillation properties of the grown crystals. The ...
متن کاملX-Ray Crystal Structure of [N, N'-bis(4-Methoxysalicylidene) -2, 3-Dimethylaminopropane] Copper(II) Ethanol Solvate
The crystal structure of the title Schiff base complex is obtained by single-crystal X-ray diffraction data.The solid state structure determination reveals that the coordination geometry around the copper(II) center istetrahedrally distorted square-planar. The crystal packing shows one dimensional infinite chains which arisesfrom the intermolecular interaction and stabilize the crystal packing.
متن کاملSwitching and tuning organic solid-state luminescence via a supramolecular approach.
Unusual intermolecular interactions of organic luminescent acid, 2-cyano-3(4-(diphenylamino)phenyl)acrylic acid (CDPA), with amines lead to the formation of supramolecular luminescence systems with switchable and tunable solid-state luminescence.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 45 شماره
صفحات -
تاریخ انتشار 2013